Bjørnafjorden floating bridge, Norge

Tina Vejrum Vice President, Major Bridges International

Bjørnafjorden, Norway Agenda

Ferry free E39
Existing Norwegian Floating Bridges
Existing North American Floating Bridges
Sognefjorden TLP Suspension Bridge
Bjørnafjorden crossing concepts
Bjørnafjorden Floating Bridge

AH.

Route E39 Kristiansand-Trondheim

- The floating bridge at Bjørnafjorden is part of the route E39 Kristiansand-Trondheim
- The E39 route is 1100 km long and have today 8 ferry links (marked in red)
- The total budget E39 as a ferry free connection is estimated to US\$ 25 billion over 20 years (2014-33)
- > 50% of Norwegian traditional export value comes from this area

Key figures for the 8 fjord crossings at E39

- > Halsafjorden, 2 km width, 5-600 m water depth
- Moldefjorden, 13 km subsea tunnel with 330 m water depth
 + 1.6 km bridge with 5-600 m water depth
- > Storfjorden/Sulafjorden, 3.4 km width, 500 m water depth
- > Voldafjorden, 2.5 km width, 600 m water depth
- > Nordfjorden, 1.7 km width, 3-500 m water depth
- > Sognefjorden, 3.7 km width, 1250 m water depth
- > Bjørnafjorden, 4-5 km width, 5-600 m water depth
- > Boknafjorden, Rogfast Subsea tunnels, 26.7 km with 390 m water depth (alt. floating bridge 7.5 km at 550 m depth)
 4 OS/04/2016 DANSK BRODAG 2016

Bergsøysund Bridge, Norway

- > 1st floating bridge in Norway opened in 1992
 - > 931 m bridge with 8 spans
 - > Steel truss girder and concrete pontoons
 - > Typical span of 106m with 6m clearance
 - > On the route E39, south of Kristiansund
 - > Installed in one piece/operation
 - Designed using "recent" technology from American floating bridges and Norwegian offshore platforms

Nordhordland bridge, Norway

- > Longest self-anchored floating bridge, 1994
 - > 1243 m floating low level and approach bridges
 - > Cable stayed concrete main bridge on land
 - > 10 light weight concrete pontoons (22 kN/m³)
 - > Orthotropic steel girder for floating bridge part
 - > Navigational span of 172m x 32m
 - > On the route E39, north of Bergen
 - > Floating bridge installed in one piece/operation

Floating Bridges with COWI involvement

- > William R. Bennett Bridge, Kelowna, BC, Canada, opened 2008
 - > Detailed design, construction services
- > SR 520 Floating Bridge, Seattle to Medina, WA, USA, 2011
 - > Bid Design
- > Sognefjorden, Norway, 2013
 - > Conceptual design
- > Bjørnafjorden, Norway, ongoing
 - > Conceptual & preliminary design

William R. Bennett Bridge, Canada

- > 690 m of floating concrete pontoons with an elevated deck
 - > Preliminary and detailed Design
 - > Design Criteria and construction services
- > Bridge details
 - > 75 years service life
 - > 52m navigation span with 18m clearance
 - > 5 traffic lanes

SR 520 Floating Bridge, Seattle, WA, USA

- > 2.35km floating bridge: The world's longest
 - > Design & Build: Bid design for JV of contractors
 - > Pontoons (concrete) and elevated superstructure (6 lanes)
 - > Transition spans and approach spans
 - > Alternative pontoon design allowed a significant saving
- > Bid design involves disciplines within
 - > Sophisticated combined wind and wave loading
 - > Live loads
 - > Buoyancy and floating stability
 - > Damage and flood scenarios

9 05/04/2016 DANSK BRODAG 2016

New bridge to open in spring '16

Sognefjorden, tension leg suspension bridge, Norway

- > Multiple span suspension bridge
- > 3 main spans of 1234m
- > 3700m wide and 1300m deep fjord
- > Total bridge length of 4.4km
- > 2 x 2 traffic lanes
- > Pedestrain/cycle path

COWI

Sognefjorden, tension leg suspension bridge, Norway

- > Bridge design details
 - > 250m steel towers
 - > Orthotropic steel box girder
 - > 180m 9-cell Condeep type floating pontoons
- > The conceptual design involves disciplines within:
 - > Structural analyses
 - > Wind and wave dynamics
 - > Cable and ship impact dynamics
 - > Marine geotech and operations

COWI

- 3 different concepts are being considered for the crossing
- > Floating bridge with cable stayed main bridge
- > 3-span suspension bridge with central TLP's
- > Tubular Bridge (submerged tunnel)

2 different layouts are being considered for the floating bridge

- > Curved bridge alignment
 - > Twin box girder with cross beams (vierendeel)
 - > Anchored in each abutment c/c 4.6km
 - > Lateral forces obtained by horizontal arch

13 05/04/2016 DANSK BRODAG 2016

- > Straight bridge alignment
 - > Mono box girder
 - > Laterally anchored by mooring lines

Bjørnafjorden, Norway General bridge details

- > Central 450m cable stayed main span
 - > 400m x 45m navigation clearance
 - > Aerodynamic bridge girder
- > 200m typical spans
- > Light weight concrete pontoons
- > Steel superstructure
 - > 160m towers
 - > Orthotropic deck
- > 2 x 2-lane highway

> 110 km/t

Alternative/preferred alignment

- > South navigation span
 - > Terrain suitable for elevated abutment (+55m)

Elevation

- > Concrete tower & main bridge on land
- > 450/490m cable stayed main span
- > 197m/203m typical spans
 - > Steep alignment after anchor pier (4%)
 - > Main part is low level
 - > 11.5m clearance (typical)
- > Cost optimal

Design basis

- > NPRA Handbooks
 - > N100 & N400
- > Eurocode NS-EN199X
 - > EN 1990-1993
- > DNV rules and regulations
 - > Floating bridges are not covered by the Eurocode system
- > Ultimate limit state typically governs design (Q-ENV)
 - > Ship impact: Locally piers, girder and pontoon walls
 - > Construction: Free standing tower (straight bridge, 100 year storm)
 - > Fatigue not yet analysed

	,	J	Win	d drive	en sea				Ocear	n swel		
Design basis	Hs[m]	Tp [s]:	3.0	4.0	5.0	6.0	12.0	14.0	16.0	17.0	18.5	20.0
	Wave dir:	Wave dir [deg]:			3							
> Wave conditions	N	180	0.9	1.6	na	na	na	na	na	na	na	na
> N-Parallel	N-NW	202.5	0.9	1.6	2.5	na	na	na	na	na	na	na
	NW	225	0.9	1.6	2.5	3	0.4	0.4	0.4	0.2	0.2	0.2
> W-Perpendicular	W-NW	247.5	0.9	1.6	2.5	3	0.4	0.4	0.4	0.2	0.2	0.2
	W	270	0.9	1.6	2.5	3	0.4	0.4	0.4	0.2	0.2	0.2

> Wind conditions

Return period	Velocity at 10 m [m/s]	Velocity at 52 m [m/s]
1	22.9	28.4
100	31.7	39.3

> Comfort criteria

Motion	Load	Criterion
Vertical deflection due to traffic	0.7 x traffic	Approx. 1 m
Rotation about bridge axis (roll) due to traffic	0.7 x traffic	1 deg
Rotation about bridge girder axis (roll) due to env. loads	1 year storm	1.5 deg
Vertical acceleration	1 year storm	0.5m/s2
Horizontal acceleration	1 year storm	0.3m/s2

Analysis methods

- > Waves
 - > Fetch and diffraction analysis for wind driven and swell wave conditions
 - > Orcaflex, Time domain, Geometric and hydrodynamic non-linear effects
- > Wind
 - > Frequency domain, NovaFrame, Geometrical non-linear effects taken into account
 - > Vortex shedding, divergence and galloping investigated (flutter pending future WTT)
- > Other loads
 - > Permanent, temperature, tidal and traffic loads (static)
 - > RM Bridge, static

Analysis methods

- > 3 programmes used separately
 - > Design forces obtained by combination factors
- > Correlation between wind and waves for bridge girder
 - > Initially $\alpha = 0.8$ (dynamic)
 - > Examined in OrcaFlex
 - > Reduced to $\alpha = 0.6$
- > Future software
 - > To cover all load effects

General pontoon design

- > Light-weight concrete
- > Post-tensioned
 - > Watertight with no cracks
- > Designed and optimized for:
 - > Wind and swell generated waves
 - > Heave and surge modes
 - > Ship impact (local strengthening)
 - > Co-existent wind and waves
 - > Roll from eccentric traffic
 - > Flooding (2 cells)

Criteria	Туре	Requirement	Consequence	Chosen design
Free board	Safety	4.0m	More concrete -> higher pontoon eigen weight	4.0m
Vertical deflection due to traffic	Function	<1.0m	C33>~10 MN/m	17.5 MN/m
Rotation about bridge axis due to traffic	Function	<1.0deg	C44>~2500 MNm/rad	2600 MNm/rad -> 4600 MNm/rad
Wall thickness	Safety	0.6m longside, 1.0m shortside	More concrete -> higher pontoon eigen weight	0.6m longside, 1.0m shortside

- Pontoon design optimisation
- > To limit weak axis bending in girder
- > Mainly caused by heave modes (total bridge)
 - > Surge/pendulum modes (elevated bridge part)
- > Avoid vertical wave triggered eigen modes
 - > Eigen periods above wind driven sea (primarily)
 - > Parameters; mass, depth, length, width, form, span
 - > Closely spaced modes ($f_{10} \approx f_{20}$)

Mode: 11

Mode: 14

Pontoon design optimisation

> Examined parameters

- > Form: Circular, basecase, oblong, "oval"
- > Draft & displacement (minor influence)
- > Added mass (flange & keel, major influence)
- > Span length (150m & 200m)
- > Wave and heave eigen periods

General superstructure design

- > High-strength S460 steel
- > Orthotropic steel girders
- > Designed and optimized for:
 - > Co-existent wind and waves

6.5

- > Vierendeel
- > Ship impact
- > Aerodynamics

Curved twin box girder and cross beam

General superstructure design

- > Reinforced concrete towers on land
 - > Mono-tower / A-shaped
 - > Girder free longitudinally and restrained laterally
 - > 5.5m eccentricity
- > Steel piers and floating towers (S460)
 - > Monolithic connected to bridge girder

Superstructure design development

- > Wave/tidal loads \Rightarrow Span length \Rightarrow Girder height
- > CFD analysis \Rightarrow Bridge girder and tower shape
- > Diaphragm & individual pedestrian girder \Rightarrow Quantities
- > Main bridge on land in south \Rightarrow Cost optimal
- > Cross beam size and position/spacing \Rightarrow Global buckling and local stress peaks
- > Connection at tower; Monolithic \Rightarrow free
- > Stay cables \Rightarrow compact design (drag)
- > Minimum clearance increased to 11.5m \Rightarrow Girder head-on-bow avoided

- Ship impact analysis
- > Head-on-bow collisions with pontoon
- > Deckhouse collision with girder
- > Monte Carlo simulation
 - > 250 MJ at anchor pier
 - > 110 MJ elsewhere
- > Ship impact governs
 - > Girder and top column design locally (HoB)
 - > Pontoon wall thickness 1.1m

Mooring cables (straight bridge)

- > 6 x 3 mooring lines with 25 design life
 - > Governed by ULS
 - > Accidental loss of cable (pending 2 cables, possible 6 x 4 lines)
 - > Gravity anchors

	Bottom chain	Wire	Top chain
Туре	R4 studless	Mooring rope	R5 studless
Length	100m	640m / 920m	20m
MBL	25.2 MN	24.5 MN	27.9 MN
Diameter	175mm	290mm	175mm

Horisontal distance [m

Key figures with south navigation span

Curved Bridge					
Steel	118700	tonnes			
Concrete	145770	m³			
Stay cables	1900	tonnes			
Ballast	105000	m³			

Straight Bridge					
Steel	80100	tonnes			
Concrete	133240	m³			
Stay cables	1050	tonnes			
Ballast	63500	m³			
Mooring cables	18	nos			

28 05/04/2016 DANSK BRODAG 2016

Main bridge construction

- > Side span on scaffolding
- > Main span by free cantilever
- > Main bridge designed for 100 year storm during construction

Construction floating bridge / Marine Operations

- > Production of pontoons/abutments
 - > Dry or floating dock
- > Floating assembly location
 - > Pontoons, columns and bridge girder
 - > Sheltered inside Bjørnafjord ~
- > Bridge location —

30

- > Stay cable bridge
- > Abutment at Flua
- > Mooring cables (straight bridge)
- > Installation of floating bridge 05/04/2016 DANSK BRODAG 2016

Construction floating bridge / Marine Operations

- > 1 total floating bridge section of 3750m
- > Assembled at shallow "still" water
- > Towed to site in a single weather restricted operation
- > Temporary guide/winch and joint brackets

Future investigations in spring '16

- > Further parametric studies
- > Increase navigational clearance from 45m to 55m
 - > Surge/pendulum motion sensitive
- > Alternative pontoon design (further optimisation)
- > Sensitivity study

32

- > Superstructure stiffness ±10%
- > Geotechnical site investigations (NGI)
 - > South abutment and tower foundation on land
 - > North abutment on Flua at 40m water depth
 - Mooring anchor positions at 550m water depth
 O5/04/2016 DANSK BRODAG 2016

1385m - 1325m - 1385m Tension Leg Platform Suspension Bridge (TLP)

> Offshore & suspension bridge technology

- > 3 suspended spans, 4095m total
 - 2 floating tower foundations, TLP's

Steel towers

Steel or concrete foundation/platforms

Steel pipe tension legs, 6-8 pr. TLP

Concrete towers on land & Flua (40m water depth, N)

Orthotropic steel girder

Steel or concrete viaduct bridge girder

Concept and time frame

- > Above or below water?
 - > Expert group meeting 2/3-16
 - > Investeringsanslag 10/3-16
- > SVV general project model

35 05/04/2016 DANSK BRODAG 2016

