

Brodagen 2009:

Stonecutters Bridge

WASHMS:

Wind and Structural Health Monitoring System,

2005-2008

Stonecutters Bridge, Hong Kong S.A.R. Tsing Ma Control Area

- _____ 2-Apr-09

Stonecutters Bridge - Location

Stonecutters Bridge - Involved Parties

Client:

• Highways Department, Hong Kong S.A.R.

Designer:

- Ove Arup & Partners, Ltd. Approach Bridges
- COWI A/S. Cable Stayed Bridge

Contractor:

• MHYH JV (Maeda - Hitachi - Yokogawa - Hsin Chong Joint Venture)

Stonecutters Bridge - Typhoons

WASHMS - Wind and Structural Health Monitoring System

- Sensory System (SS)
- Data Acquisition and Transmission System (DATS)
- Portable Data Acquisition System (PDAS)
- Data Processing and Control System (DPCS)
- Structural Health Evaluation System (SHES)
- Portable Inspection and Maintenance System (PIMS)

Loads & Responses

- Environments and status.
 - Wind monitoring.
 - Temperature monitoring.
 - Seismic monitoring.
 - Corrosion status monitoring.
- Traffic loads.
 - Highway traffic monitoring.
- Bridge characteristics.
 - Static influence coefficients monitoring.
 - Global dynamic characteristics monitoring.

- Bridge responses.
 - Cable forces monitoring.
 - Geometric configuration monitoring.
 - Strain/Stress distribution monitoring.
 - Fatigue stress monitoring.
 - Articulation monitoring.

Sonic anemometers

GPS

KEY DIAGRAM

<u>u 1171</u>

COW

13 2-Apr-09

Corrosion monitoring

Stonecutters Bridge - Bearings & Dampers

Stonecutters Bridge Feb. 2009

17 2-Apr-09

Data Acquisition and Transmission System (DATS)

18 2-Apr-09

Data Processing and Control System (DPCS)

Data Processing

Names and Requirements of	Duration	Presentation Formats		mats	Names and Requirements of	Duration	Presentation Formats				
Parameters or		AD	TD	FD	FC	Parameters or		AD	TD	FD	FC
Plots for Monitoring						Plots for Monitoring		ļ			
Global Dynamic Characteristics	For each					Spectra Plots					
- Measurement and Tabulation of	frequency					- For extreme events such as heavy					
Modal Frequencies, Mode Shapes,	extraction					traffic flow, monsoons and					
Modal Damping Ratios and Modal	, at least 8					typhoons, etc.					
Mas Participation Factors	hours of	Х		Х		- Acceleration, velocity and	Duration	X		Х	
- Plots of Measured Mode Shapes	stationary					displacement spectra at bridge-	of the				
for all Measured Modal	and					deck	whole				
Frequencies	ergodic					- Acceleration velocity and	event				
- Correlating the measured/extracted	data are					displacement spectra at tower-tops					
results to those Design/Theoretical	required.					- Acceleration, velocity and					
Values	Only at					displacement spectra at					
- Calibration of Analytical Model	manual					instrumented stay cables					
for the bridge	trig										
Tensile Forces in Stay Cables						Displacement Demand Ratio Plots	Monthly				
- Measurement and Tabulation of						- Plots of the ratio of the measured	and	X			
Modal Frequencies, hence the						maximum displacement at	Annually				
Tensile Force in each Stay Cable						instrumented location to the design	,				
- Plotting the measured frequency of						values at SLS and ULS respectively					
stay cables along bridge-deck						- Correlating with corresponding					
alignment and comparing with the	Same as	Х		Х		requirements for inspection and					
first few lower frequencies	above.					maintenance					
(measured) of deck and tower for											
parametric effect validation											
- Comparing the measured/extracted											
force results with those Design											
Values at SLS & ULS											
- Assessing the vertical and		Note	es:								
horizontal forces induced in deck		1. AD = Amplitude Domain, TD = Time Domain, FD = Frequency Domain and FC = Frequency Court									
and towers as a result of cable		2. 'X' denotes format required.									
vibration		2.				1					

Structural Health Evaluation System (SHES)

Software

- Software A Customized LabVIEW or MATLAB Software for Data Acquisition and Processing or products having equivalent functions or performance
- Software B Customized LabVIEW or MATLAB Software for Data Transmission and Filing Control or products having equivalent functions or performance
- Software C Customized LabVIEW or MATLAB Software for Data Archiving and Backup or products having equivalent functions or performance
- Software D Customized LabVIEW or MATLAB Software for Display, Operation and Control or products having equivalent functions or performance
- Software E NI Developer Suite Professional Control Edition or products having equivalent functions or performance
- Software F NI DIAdem Powerful Analysis and Report Generation Software or products having equivalent functions or performance
- Software G MS Office Professional for 32-bit and 64-bit MS Windows or products having equivalent functions or performance
- Software H Adobe Design Collection or products having equivalent functions or performance
- Software I Adobe Digital Video Collection or products having equivalent functions or performance
- Software J Adobe Publishing Collection or products having equivalent functions or performance
- Software K NI VI Logger or products having equivalent functions or performance
- Software L MATLAB "Data Analysis Suite" or products having equivalent functions or performance
- Software M MSC.PATRAN or products having equivalent functions or performance
- Software N MSC.Marc or products having equivalent functions or performance
- Software O MSC.Fatigue or products having equivalent functions or performance
- Software P ANSYS Physics Verticals Whole Package or products having equivalent functions or performance
- Software Q GPS Monitoring Software
- Software R CAD Software for viewing and editing of drawing files
- Software S FEvis Finite Element Results Visualization Publisher for Windows with FEvis Viewer or products having equivalent functions or performance
- Software T Customized Traffic Jam Recording Software

Wind Loading

Fatigue

Histogram of Strain / Stress Half-Cycles for Fatigue Damage Assessment

Fatigue Damage deduced from Traffic Flow Conditions

0 to 5	5.40746e+006
5 to 10	955498
10 to 15	429015
15 to 20	134583
20 to 25	36976
25 to 30	7374
30 to 35	709
35 to 40	44
40 to 45	2
45 to 50	1
50 to 55	0
55 to 60	0

365 micro-dan

10 micro-stra

1027 years

3287 hours 1000 micro-stra

24 2-Apr-09

GPS Monitoring Console – 4 in 1 Display of Selected Monitoring Regimes

OWI Dansk Brodag

25 2-Apr-09

Damage Detection

Inspection & Point Ranking

WASHMS Status March 2009

- Sensory system: Basically, the installation for embedded sensory system is completed, but not for the associated cabling work. Installation for the other sensory systems are outstanding at the moment.
- The Global Cabling Network System is completed.
- Data Acquisition Units The FAT for DAU 5 to 8 was conducted in mid February and the others (DAU 1 to 4) will be carried out around end of March 2009. The DAU 5 to 8 will be delivered to site in March and DAU 1 and 4 will be delivered to site in around April 2009.
- Computer servers the hardware proposal are now under review and will be finalized in this month. Servers would be delivered to site around May 2009.
- Software development Most of the development for customized software, such as Software A,B,C,D, Q, T, and the Historical Database is on-going. In term of percentage, it should be around 50-60% completed.

Stonecutters SHMS compared to other major bridges

- Stonecutters Bridge.
 WASHMS, 80 mill DKK, 3,2% of construction cost (2.500 mill DKK)
- Sutong Bridge.
 SHMS, 23 mill DKK, 0,5% of construction cost (4.500 mill DKK)

Naini Bridge. SHMS, 6 mill DKK, 1,2% of construction cost (500 mill DKK)

